Vector bundles on curves
Darmstadt, Room 401 and Zoom Schlossgartenstraße 7, Darmstadt, GermanyChristopher Lang: Vector bundles in families
tba
ZoomAmeya Pitale (University of Oklahoma): tba
The direct summand theorem
Heidelberg, Mathematikon, SR 8 INF 205, Heidelberg, GermanyTalk 9: Christian Dahlhausen (Universität Heidelberg): The almost purity theorem
Moduli of Quiver Representations and GIT Quotients
Frankfurt, Robert-Mayer-Str. 6-8, Raum 309Talk 3.1: Miguel Prado (Goethe Universität): Introduction to Quivers and Properties I
Talk 3.2: Jeonghoon So (Goethe Universität): Introduction to Quivers and Properties II
Seminar on Arithmetic Geometry
Darmstadt, Room 401 and Zoom Schlossgartenstraße 7, Darmstadt, GermanyThomas Nikolaus (Universität Münster): tba
The direct summand theorem
Heidelberg, Mathematikon, SR 8 INF 205, Heidelberg, GermanyTalk 10: Max Witzelsperger (Universität Heidelberg): The direct summand theorem
Moduli of Quiver Representations and GIT Quotients
Frankfurt, Rober-Mayer-Str. 10, Raum 711 kleinTalk 4.1: Arne Kuhrs (Goethe Universität): Affine Moduli Spaces of Quiver Representations
Talk 4.2: Johannes Horn (Goethe Universität): Moduli Spaces of Quiver Representations
Anabelian geometry – Mochizuki’s proof of the Hom-Conjecture [d’après Faltings]
Frankfurt, Robert-Mayer-Str. 6-8, Raum 309Talk 5: Bloch-Kato Selmer groups
Talk 6: Hodge-Tate sections are geometric up to torsion
Seminar on Arithmetic Geometry
Darmstadt, Room 401 and Zoom Schlossgartenstraße 7, Darmstadt, GermanyCan Yaylali (TU Darmstadt): tba
Vector bundles on curves
Darmstadt, Room 401 and Zoom Schlossgartenstraße 7, Darmstadt, Germanytba: Stacks and examples
tba
ZoomYiannis Petridis (UCL): tba
Anabelian geometry – Mochizuki’s proof of the Hom-Conjecture [d’après Faltings]
HeidelbergTalk 7: Benjamin Steklov (Goethe Universität): Preparations for Proposition 11: 𝑝-divisible groups
Talk 8: Preparations for Proposition 11: the Tate conjecture