Moduli of Quiver Representations and GIT Quotients
Frankfurt, Robert-Mayer-Str. 6-8, Raum 309Talk 3.1: Miguel Prado (Goethe Universität): Introduction to Quivers and Properties I
Talk 3.2: Jeonghoon So (Goethe Universität): Introduction to Quivers and Properties II
tba
Heidelberg, MATHEMATIKON, SR 10 INF 205, Heidelberg, GermanyDr. Nikolas Kuhn, Postdoctoral Research Associate, Mathematical Institute University of Oxford
Seminar on Arithmetic Geometry
Darmstadt, Room 401 and Zoom Schlossgartenstraße 7, Darmstadt, GermanyThomas Nikolaus (Universität Münster): tba
The direct summand theorem
Heidelberg, Mathematikon, SR 8 INF 205, Heidelberg, GermanyTalk 10: Max Witzelsperger (Universität Heidelberg): The direct summand theorem
Moduli of Quiver Representations and GIT Quotients
Frankfurt, Rober-Mayer-Str. 10, Raum 711 kleinTalk 4.1: Arne Kuhrs (Goethe Universität): Affine Moduli Spaces of Quiver Representations
Talk 4.2: Johannes Horn (Goethe Universität): Moduli Spaces of Quiver Representations
Anabelian geometry – Mochizuki’s proof of the Hom-Conjecture [d’après Faltings]
Frankfurt, Robert-Mayer-Str. 6-8, Raum 309Talk 5: Bloch-Kato Selmer groups
Talk 6: Hodge-Tate sections are geometric up to torsion
tba
Heidelberg, MATHEMATIKON, SR 10 INF 205, Heidelberg, GermanyWeisheng Wang, Utrecht Geometry Center (Utrecht University)
Seminar on Arithmetic Geometry
Darmstadt, Room 401 and Zoom Schlossgartenstraße 7, Darmstadt, GermanyCan Yaylali (TU Darmstadt): tba
Vector bundles on curves
Darmstadt, Room 401 and Zoom Schlossgartenstraße 7, Darmstadt, Germanytba: Stacks and examples
tba
ZoomYiannis Petridis (UCL): tba
Anabelian geometry – Mochizuki’s proof of the Hom-Conjecture [d’après Faltings]
HeidelbergTalk 7: Benjamin Steklov (Goethe Universität): Preparations for Proposition 11: 𝑝-divisible groups
Talk 8: Preparations for Proposition 11: the Tate conjecture
Seminar on Arithmetic Geometry
Darmstadt, Room 401 and Zoom Schlossgartenstraße 7, Darmstadt, GermanyJens Eberhardt (Gutenberg Universität Mainz): tba