GAUS-AG
Congruence Modules and the Wiles–Lenstra–Diamond Numerical Criterion in Higher Codimension
Heidelberg, Mathematikon, SR 8 INF 205, Heidelberg, GermanyAlireza Shavali (Universität Heidelberg): Congruence modules and Wiles defect
Vector bundles on curves
Darmstadt, Room 401 and Zoom Schlossgartenstraße 7, Darmstadt, GermanySaskia Kern : Harder–Narasimhan filtration
Hodge Theory
Mainz, Hilbertraum (05-432)Luca Passolunghi (Universität Mainz): Kähler manifolds I
The direct summand theorem
Heidelberg, Mathematikon, SR 8 INF 205, Heidelberg, GermanyTalk 7: Marlon Kocher (Universität Heidelberg): Perfectoid spaces I: Tilting of Rational Subsets
Congruence Modules and the Wiles–Lenstra–Diamond Numerical Criterion in Higher Codimension
Heidelberg, Mathematikon, SR 8 INF 205, Heidelberg, GermanyTheresa Kaiser (Universität Heidelberg): Cohen–Macaulay modules and complete intersection rings
Vector bundles on curves
Darmstadt, Room 401 and Zoom Schlossgartenstraße 7, Darmstadt, GermanyRizacan Ciloglu : Existence of semi-stable vector bundles and examples
The direct summand theorem
Heidelberg, Mathematikon, SR 8 INF 205, Heidelberg, GermanyTalk 8: Marvin Schneider (Universität Heidelberg): Perfectoid spaces II: Tate acyclicity
Congruence Modules and the Wiles–Lenstra–Diamond Numerical Criterion in Higher Codimension
Heidelberg, Mathematikon, SR 8 INF 205, Heidelberg, GermanySriram Chinthalagiri Venkata (Universität Heidelberg): Tate resolutions
Vector bundles on curves
Darmstadt, Room 401 and Zoom Schlossgartenstraße 7, Darmstadt, GermanyChristopher Lang: Vector bundles in families
Hodge Theory
Mainz, Hilbertraum (05-432)Tom Bachmann (Universität Mainz): Pure Hodge structures
The direct summand theorem
Heidelberg, Mathematikon, SR 8 INF 205, Heidelberg, GermanyTalk 9: Christian Dahlhausen (Universität Heidelberg): The almost purity theorem
Moduli of Quiver Representations and GIT Quotients
Frankfurt, Robert-Mayer-Str. 6-8, Raum 309Talk 3.1: Miguel Prado (Goethe Universität): Introduction to Quivers and Properties I
Talk 3.2: Jeonghoon So (Goethe Universität): Introduction to Quivers and Properties II