GAUS-AG
Calendar of Events
M Mon
T Tue
W Wed
T Thu
F Fri
S Sat
S Sun
0 events,
1 event,
1 event,
1 event,
The direct summand theorem
The direct summand theorem
Talk 7: Marlon Kocher (Universität Heidelberg): Perfectoid spaces I: Tilting of Rational Subsets
1 event,
Congruence Modules and the Wiles–Lenstra–Diamond Numerical Criterion in Higher Codimension
Congruence Modules and the Wiles–Lenstra–Diamond Numerical Criterion in Higher Codimension
Theresa Kaiser (Universität Heidelberg): Cohen–Macaulay modules and complete intersection rings
0 events,
0 events,
0 events,
1 event,
0 events,
1 event,
The direct summand theorem
The direct summand theorem
Talk 8: Marvin Schneider (Universität Heidelberg): Perfectoid spaces II: Tate acyclicity
1 event,
Congruence Modules and the Wiles–Lenstra–Diamond Numerical Criterion in Higher Codimension
Congruence Modules and the Wiles–Lenstra–Diamond Numerical Criterion in Higher Codimension
Sriram Chinthalagiri Venkata (Universität Heidelberg): Tate resolutions
0 events,
0 events,
0 events,
1 event,
1 event,
2 events,
The direct summand theorem
The direct summand theorem
Talk 9: Christian Dahlhausen (Universität Heidelberg): The almost purity theorem
Moduli of Quiver Representations and GIT Quotients
Moduli of Quiver Representations and GIT Quotients
Talk 3.1: Miguel Prado (Goethe Universität): Introduction to Quivers and Properties I
Talk 3.2: Jeonghoon So (Goethe Universität): Introduction to Quivers and Properties II
1 event,
Congruence Modules and the Wiles–Lenstra–Diamond Numerical Criterion in Higher Codimension
Congruence Modules and the Wiles–Lenstra–Diamond Numerical Criterion in Higher Codimension
Gebhard Böckle (Universität Heidelberg): Congruence modules and Wiles defect under surjections
0 events,
0 events,
0 events,
0 events,
1 event,
3 events,
The direct summand theorem
The direct summand theorem
Talk 10: Max Witzelsperger (Universität Heidelberg): The direct summand theorem
Anabelian geometry – Mochizuki’s proof of the Hom-Conjecture [d’après Faltings]
Anabelian geometry – Mochizuki’s proof of the Hom-Conjecture [d’après Faltings]
Talk 4: Marius Leonhardt (Goethe Universität): Construction of 𝔥 and Hodge-Tateness of rational sections
Talk 5: Morten Lüders (Universität Heidelberg): Bloch-Kato Selmer groups
Moduli of Quiver Representations and GIT Quotients
Moduli of Quiver Representations and GIT Quotients
Talk 4.1: Arne Kuhrs (Goethe Universität): Affine Moduli Spaces of Quiver Representations
Talk 4.2: Johannes Horn (Goethe Universität): Moduli Spaces of Quiver Representations
1 event,
Congruence Modules and the Wiles–Lenstra–Diamond Numerical Criterion in Higher Codimension
Congruence Modules and the Wiles–Lenstra–Diamond Numerical Criterion in Higher Codimension
Junyan Xu (Universität Heidelberg): Wiles defect and free direct summands