GAUS-AG
Calendar of Events
M Mon
T Tue
W Wed
T Thu
F Fri
S Sat
S Sun
0 events,
0 events,
0 events,
0 events,
0 events,
0 events,
0 events,
1 event,
0 events,
1 event,
Congruence Modules and the Wiles–Lenstra–Diamond Numerical Criterion in Higher Codimension
Congruence Modules and the Wiles–Lenstra–Diamond Numerical Criterion in Higher Codimension
Andrea Conti (Universität Heidelberg): Patching
0 events,
0 events,
0 events,
1 event,
1 event,
1 event,
Anabelian geometry – Mochizuki’s proof of the Hom-Conjecture [d’après Faltings]
Anabelian geometry – Mochizuki’s proof of the Hom-Conjecture [d’après Faltings]
Talk 6: Ruth Wild (Goethe Universität): Hodge-Tate sections are geometric up to torsion
Talk 7: Benjamin Steklov (Goethe Universität): Preparations for Proposition 11: 𝑝-divisible groups
1 event,
Congruence Modules and the Wiles–Lenstra–Diamond Numerical Criterion in Higher Codimension
Congruence Modules and the Wiles–Lenstra–Diamond Numerical Criterion in Higher Codimension
Gebhard Böckle (Universität Heidelberg): Galois deformation conditions
0 events,
0 events,
0 events,
1 event,
1 event,
1 event,
Moduli of Quiver Representations and GIT Quotients
Moduli of Quiver Representations and GIT Quotients
Talk 5.1: Martin Ulirsch (Goethe Universität): Algebraic Aspects of Stability
Talk 5.2: Andrei Bud (Goethe Universität): Further Geometric Properties of Quiver Moduli
1 event,
Congruence Modules and the Wiles–Lenstra–Diamond Numerical Criterion in Higher Codimension
Congruence Modules and the Wiles–Lenstra–Diamond Numerical Criterion in Higher Codimension
Andrea Conti (Universität Heidelberg): Hecke eigensystems and Galois representations for PGL_2
0 events,
0 events,
0 events,
1 event,
1 event,
1 event,
Anabelian geometry – Mochizuki’s proof of the Hom-Conjecture [d’après Faltings]
Anabelian geometry – Mochizuki’s proof of the Hom-Conjecture [d’après Faltings]
Talk 8: Amine Koubaa (Goethe Universität): Preparations for Proposition 11: the Tate conjecture
Talk 9: Magnus Carlson (Goethe Universität): Sections geometric up to torsion
1 event,
Congruence Modules and the Wiles–Lenstra–Diamond Numerical Criterion in Higher Codimension
Congruence Modules and the Wiles–Lenstra–Diamond Numerical Criterion in Higher Codimension
Alireza Shavali (Universität Heidelberg): Hecke eigensystems and Galois representations for quaternion algebras