The heart fan of an abelian category
Mainz, Hilbertraum (05-432)David Ploog (Stavanger)
Congruence Modules and the Wiles–Lenstra–Diamond Numerical Criterion in Higher Codimension
Heidelberg, Mathematikon, SR 8 INF 205, Heidelberg, GermanyGebhard Böckle (Universität Heidelberg): Congruence modules and Wiles defect under surjections
Wall crossing for equivariant CY3 categories
Heidelberg, MATHEMATIKON, SR10 INF 205, Heidelberg, GermanyNikolas Kuhn (University of Oxford)
Resolution of non-singularities and anabelian applications
Heidelberg, Mathematikon, SR A and LivestreamEmmanuel Lepage (IMJ Paris)
Seminar on Arithmetic Geometry
Darmstadt, Room 401 and Zoom Schlossgartenstraße 7, Darmstadt, GermanyThomas Nikolaus (Universität Münster): (Relative) Prismatic cohomology, K-Theory and Topology
p-adic higher Green’s functions for Stark-Heegner Cycles
ZoomHazem Hassan (McGill)
Hodge Theory
Mainz, Hilbertraum (05-432)Nutsa Gegelia (Universität Mainz): Variations of Hodge structures I
The direct summand theorem
Heidelberg, Mathematikon, SR 8 INF 205, Heidelberg, GermanyTalk 10: Max Witzelsperger (Universität Heidelberg): The direct summand theorem
Moduli of Quiver Representations and GIT Quotients
Frankfurt, Rober-Mayer-Str. 10, Raum 711 kleinTalk 4.1: Arne Kuhrs (Goethe Universität): Affine Moduli Spaces of Quiver Representations
Talk 4.2: Johannes Horn (Goethe Universität): Moduli Spaces of Quiver Representations
Anabelian geometry – Mochizuki’s proof of the Hom-Conjecture [d’après Faltings]
Frankfurt, Robert-Mayer-Str. 6-8, Raum 309Talk 4: Marius Leonhardt (Goethe Universität): Construction of 𝔥 and Hodge-Tateness of rational sections
Talk 5: Morten Lüders (Universität Heidelberg): Bloch-Kato Selmer groups
Explicit methods for enumerative invariants using Siegel and mock modular forms: The K3 case
Mainz, Hilbertraum (05-432)Abhiram Kidambi (MPI Leipzig)
Congruence Modules and the Wiles–Lenstra–Diamond Numerical Criterion in Higher Codimension
Heidelberg, Mathematikon, SR 8 INF 205, Heidelberg, GermanyJunyan Xu (Universität Heidelberg): Wiles defect and free direct summands