GAUS-AG
Vector bundles on curves
Darmstadt, Room 401 and Zoom Schlossgartenstraße 7, Darmstadt, GermanyThibaud van den Hove (TU Darmstadt): Algebraicity of BunX,n
Hodge Theory
Mainz, Hilbertraum (05-432)Klaus Mattis (Universität Mainz): Mixed Hodge structures on smooth varieties II
Moduli of Quiver Representations and GIT Quotients
Frankfurt, Rober-Mayer-Str. 10, Raum 711 kleinTalk 5.1: Martin Ulirsch (Goethe Universität): Algebraic Aspects of Stability
Talk 5.2: Andrei Bud (Goethe Universität): Further Geometric Properties of Quiver Moduli
Congruence Modules and the Wiles–Lenstra–Diamond Numerical Criterion in Higher Codimension
Heidelberg, Mathematikon, SR 8 INF 205, Heidelberg, Germanytba: Hecke eigensystems and Galois representations for PGL_2
Vector bundles on curves
Darmstadt, Room 401 and Zoom Schlossgartenstraße 7, Darmstadt, GermanyPaul Siemon: Geometry of BunX,n
Hodge Theory
Mainz, Hilbertraum (05-432)Georg Tamme (Universität Mainz): Mixed Hodge structures on smooth varieties III
Anabelian geometry – Mochizuki’s proof of the Hom-Conjecture [d’après Faltings]
Frankfurt, Robert-Mayer-Str. 6-8, Raum 309Talk 8: Amine Koubaa (Goethe Universität): Preparations for Proposition 11: the Tate conjecture
Talk 9: Magnus Carlson (Goethe Universität): Sections geometric up to torsion
Congruence Modules and the Wiles–Lenstra–Diamond Numerical Criterion in Higher Codimension
Heidelberg, Mathematikon, SR 8 INF 205, Heidelberg, GermanyAlireza Shavali (Universität Heidelberg): Hecke eigensystems and Galois representations for quaternion algebras
Vector bundles on curves
Darmstadt, Room 401 and Zoom Schlossgartenstraße 7, Darmstadt, GermanyJon Miles: tba
Hodge Theory
Mainz, Hilbertraum (05-432)Tom Bachmann (Universität Mainz): Mixed Hodge structures on singular varieties
Moduli of Quiver Representations and GIT Quotients
Frankfurt, Rober-Mayer-Str. 10, Raum 711 kleinTalk 6.1: Andreas Gross (Goethe Universität): Framed Representations
Talk 6.2: Pedro Souza (Goethe Universität): Symplectic Geometry and Double Quivers
Anabelian geometry – Mochizuki’s proof of the Hom-Conjecture [d’après Faltings]
HeidelbergTalk 10: Tim Holzschuh (Universität Heidelberg): Proof of the Hom conjecture