GAUS-AG
Moduli of Quiver Representations and GIT Quotients
Frankfurt, Robert-Mayer-Str. 6-8, Raum 309Talk 2.1: Nicole Müller (Goethe Universität): Affine GIT
Talk 2.2: Felix Göbler (Goethe Universität): Projective GIT
Congruence Modules and the Wiles–Lenstra–Diamond Numerical Criterion in Higher Codimension
Heidelberg, Mathematikon, SR 8 INF 205, Heidelberg, GermanyAndrea Conti (Universität Heidelberg): Overview
Vector bundles on curves
Darmstadt, Room 401 and Zoom Schlossgartenstraße 7, Darmstadt, GermanyMichelle Klemt : Vector bundles on curves of low genus
Hodge Theory
Mainz, Hilbertraum (05-432)Andreas Gieringer (Universität Mainz): Harmonic forms I
The direct summand theorem
Heidelberg, Mathematikon, SR 8 INF 205, Heidelberg, GermanyTalk 6: Yanik Kleibrink (Universität Frankfurt): Adic spaces II
Anabelian geometry – Mochizuki’s proof of the Hom-Conjecture [d’après Faltings]
HeidelbergTalk 3: Leonie Scherer (Goethe Universität): Unipotent Tannakian categories
Congruence Modules and the Wiles–Lenstra–Diamond Numerical Criterion in Higher Codimension
Heidelberg, Mathematikon, SR 8 INF 205, Heidelberg, GermanyAlireza Shavali (Universität Heidelberg): Congruence modules and Wiles defect
Vector bundles on curves
Darmstadt, Room 401 and Zoom Schlossgartenstraße 7, Darmstadt, GermanySaskia Kern : Harder–Narasimhan filtration
Hodge Theory
Mainz, Hilbertraum (05-432)Luca Passolunghi (Universität Mainz): Kähler manifolds I
The direct summand theorem
Heidelberg, Mathematikon, SR 8 INF 205, Heidelberg, GermanyTalk 7: Marlon Kocher (Universität Heidelberg): Perfectoid spaces I: Tilting of Rational Subsets
Congruence Modules and the Wiles–Lenstra–Diamond Numerical Criterion in Higher Codimension
Heidelberg, Mathematikon, SR 8 INF 205, Heidelberg, GermanyTheresa Kaiser (Universität Heidelberg): Cohen–Macaulay modules and complete intersection rings
Vector bundles on curves
Darmstadt, Room 401 and Zoom Schlossgartenstraße 7, Darmstadt, GermanyRizacan Ciloglu : Existence of semi-stable vector bundles and examples