GAUS-AG
Moduli of Quiver Representations and GIT Quotients
Frankfurt, Robert-Mayer-Str. 6-8, Raum 309Talk 3.1: Miguel Prado (Goethe Universität): Introduction to Quivers and Properties I
Talk 3.2: Jeonghoon So (Goethe Universität): Introduction to Quivers and Properties II
Congruence Modules and the Wiles–Lenstra–Diamond Numerical Criterion in Higher Codimension
Heidelberg, Mathematikon, SR 8 INF 205, Heidelberg, GermanyGebhard Böckle (Universität Heidelberg): Congruence modules and Wiles defect under surjections
Hodge Theory
Mainz, Hilbertraum (05-432)Nutsa Gegelia (Universität Mainz): Variations of Hodge structures I
The direct summand theorem
Heidelberg, Mathematikon, SR 8 INF 205, Heidelberg, GermanyTalk 10: Max Witzelsperger (Universität Heidelberg): The direct summand theorem
Moduli of Quiver Representations and GIT Quotients
Frankfurt, Rober-Mayer-Str. 10, Raum 711 kleinTalk 4.1: Arne Kuhrs (Goethe Universität): Affine Moduli Spaces of Quiver Representations
Talk 4.2: Johannes Horn (Goethe Universität): Moduli Spaces of Quiver Representations
Anabelian geometry – Mochizuki’s proof of the Hom-Conjecture [d’après Faltings]
Frankfurt, Robert-Mayer-Str. 6-8, Raum 309Talk 4: Marius Leonhardt (Goethe Universität): Construction of 𝔥 and Hodge-Tateness of rational sections
Talk 5: Morten Lüders (Universität Heidelberg): Bloch-Kato Selmer groups
Congruence Modules and the Wiles–Lenstra–Diamond Numerical Criterion in Higher Codimension
Heidelberg, Mathematikon, SR 8 INF 205, Heidelberg, GermanyJunyan Xu (Universität Heidelberg): Wiles defect and free direct summands
Hodge Theory
Mainz, Hilbertraum (05-432)Nutsa Gegelia (Universität Mainz): Variations of Hodge structures II
Congruence Modules and the Wiles–Lenstra–Diamond Numerical Criterion in Higher Codimension
Heidelberg, Mathematikon, SR 8 INF 205, Heidelberg, GermanyAndrea Conti (Universität Heidelberg): Patching
Vector bundles on curves
Darmstadt, Room 401 and Zoom Schlossgartenstraße 7, Darmstadt, GermanyYanick Kleibrink (Goethe Universität Frankfurt): Stacks and examples
Hodge Theory
Mainz, Hilbertraum (05-432)Anton Engelmann (Universität Mainz): Mixed Hodge structures on smooth varieties I
Anabelian geometry – Mochizuki’s proof of the Hom-Conjecture [d’après Faltings]
HeidelbergTalk 6: Ruth Wild (Goethe Universität): Hodge-Tate sections are geometric up to torsion
Talk 7: Benjamin Steklov (Goethe Universität): Preparations for Proposition 11: 𝑝-divisible groups