GAUS-AG
Calendar of Events
M Mon
T Tue
W Wed
T Thu
F Fri
S Sat
S Sun
0 events,
1 event,
0 events,
2 events,
The direct summand theorem
The direct summand theorem
Talk 3: Nils Witt (Universität Heidelberg): Non-Archimedean Banach Algebras
Anabelian geometry – Mochizuki’s proof of the Hom-Conjecture [d’après Faltings]
Anabelian geometry – Mochizuki’s proof of the Hom-Conjecture [d’après Faltings]
Talk 1: Jakob Stix (Goethe Universität): Introduction
Talk 2: Jonathan Miles (Goethe Universität): Galois cohomology and Hodge-Tate decomposition
0 events,
0 events,
0 events,
0 events,
1 event,
0 events,
2 events,
The direct summand theorem
The direct summand theorem
Talk 4: Anna Blanco Cabanillas(Universität Heidelberg): Perfectoid algebras
Moduli of Quiver Representations and GIT Quotients
Moduli of Quiver Representations and GIT Quotients
Talk 1.1: Kevin Kühn (Goethe Universität): Introduction to Moduli
Talk 1.2: Yiu-Man Wong (Goethe Universität): Algebraic Group Actions and Quotients
0 events,
0 events,
0 events,
0 events,
1 event,
1 event,
2 events,
Moduli of Quiver Representations and GIT Quotients
Moduli of Quiver Representations and GIT Quotients
Talk 2.1: Nicole Müller (Goethe Universität): Affine GIT
Talk 2.2: Felix Göbler (Goethe Universität): Projective GIT
1 event,
Congruence Modules and the Wiles–Lenstra–Diamond Numerical Criterion in Higher Codimension
Congruence Modules and the Wiles–Lenstra–Diamond Numerical Criterion in Higher Codimension
Andrea Conti (Universität Heidelberg): Overview
0 events,
0 events,
0 events,
1 event,
1 event,
2 events,
Anabelian geometry – Mochizuki’s proof of the Hom-Conjecture [d’après Faltings]
Anabelian geometry – Mochizuki’s proof of the Hom-Conjecture [d’après Faltings]
Talk 3: Leonie Scherer (Goethe Universität): Unipotent Tannakian categories
1 event,
Congruence Modules and the Wiles–Lenstra–Diamond Numerical Criterion in Higher Codimension
Congruence Modules and the Wiles–Lenstra–Diamond Numerical Criterion in Higher Codimension
Alireza Shavali (Universität Heidelberg): Congruence modules and Wiles defect
0 events,
0 events,
0 events,
1 event,
1 event,
1 event,
The direct summand theorem
The direct summand theorem
Talk 7: Marlon Kocher (Universität Heidelberg): Perfectoid spaces I: Tilting of Rational Subsets
1 event,
Congruence Modules and the Wiles–Lenstra–Diamond Numerical Criterion in Higher Codimension
Congruence Modules and the Wiles–Lenstra–Diamond Numerical Criterion in Higher Codimension
Theresa Kaiser (Universität Heidelberg): Cohen–Macaulay modules and complete intersection rings