Prismatic F-crystals associated with strongly divisible modules
Frankfurt, Robert-Mayer-Str. 6-8, Raum 308Seminar: Non-archimedean geometry
Matti Würthen (Universität Frankfurt)
Superconnections, theta series, and period domains
Darmstadt, Room 244 and Zoom Schlossgartenstraße 7, DarmstadtPeriod domains and invariant forms
Periods, Power Series, and Integrated Algebraic Numbers
Frankfurt, Robert-Mayer-Str. 10, Raum 711 großTobias Kaiser (Universität Passau)
Six functor formalism and Poincaré duality
Heidelberg, Mathematikon, SR 8 und Zoom , GermanyTalk 4: Christian Dahlhausen (Universität Heidelberg): 6FF: ∞-categorical background
Bridgeland stability conditions and applications
Frankfurt, Robert-Mayer-Str. 10, Raum 711 großTalk 5: K. Kühn (Goethe Universität Frankfurt): Stability conditions on triangulated categories
Talk 6: J. Horn (Goethe Universität Frankfurt): The stability manifold
An equivariant local epsilon constant conjecture
Heidelberg, Mathematikon, SR A and LivestreamAlessandro Cobbe (Universität Heidelberg)
Discontinuity property of a certain Habiro series at roots of unity
ZoomToshiki Matsusaka (Kyushu University): Discontinuity property of a certain Habiro series at roots of unity
Vectorial Drinfeld modular forms over Tate algebras
Heidelberg, Mathematikon, SR 8 INF 205, Heidelberg, GermanySriram Chinthalagiri Venkata: Drinfeld modular forms of prime power levels via vectorial modular forms
On Emerton’s factorization of completed cohomology
Frankfurt, Robert-Mayer-Str. 6-8, Raum 308Seminar: Non-archimedean geometry
Pierre Colmez (CNRS, Sorbonne Université, Paris)
Superconnections, Theta series and period domains
Darmstadt, Room 244 and Zoom Schlossgartenstraße 7, DarmstadtGabriele Bogo (TU Darmstadt): Relations with the Kudla–Millson forms
Hidden structures on de Rham cohomology of p-adic analytic varieties
Frankfurt, Robert-Mayer-Str. 10, Raum 711 großWieslawa Niziol (CNRS, Sorbonne Université, Paris)
Six functor formalism and Poincaré duality
Heidelberg, Mathematikon, SR 8 und Zoom , GermanyTalk 5: Morten Lüders (Universität Heidelberg): Symmetric monoidal ∞-categories and 6FF