Purity for the flat cohomology
Heidelberg, Mathematikon, SR tbaTalk 4: Marius Leonhardt (Universität Heidelberg): Inputs from crystalline and prismatic Dieudonné theory
Arithmetic of critical p-adic L-functions
Heidelberg, Mathematikon, SR 8 INF 205, Heidelberg, GermanyTalk 6: Max Witzelsperger: Secondary p-adic L-functions
CRC-Colloquium
Darmstadt Gebäude S1|15, Hörsaal 13315:30 - 16:30 Georg Tamme (Universität Mainz): Higher algebra and K-theory
17:15 - 18:15 Otmar Venjakob (Universität Heidelberg): Explicit Reciprocity Laws in Number Theory
Shtukas for reductive groups and global Langlands correspondence after Vincent Lafforgue
Heidelberg, Mathematikon, SR 8 INF 205, Heidelberg, GermanyTalk 7: Alireza Shavali (Universität Heidelberg): Finiteness of cohomology of moduli of shtukas
Zagier’s conjecture on polylogarithms: from function fields to number fields
Heidelberg, Mathematikon, SR A and LivestreamQuentin Gazda (CMLS Palaiseau)
Seminar on Arithmetic Geometry
Darmstadt, Room 401 and Zoom Schlossgartenstraße 7, Darmstadt, GermanyMinjia Zhang (Princeton University): Igusa stacks and cohomology of Shimura varieties
Chromatic Homotopy Theory
Darmstadt, Room 401, Mainz Room 04-432 and Zoom Darmstadt and Mainz, Darmstadt and MainzLucas Gerth (Uni Frankfurt): Talk 9 - Lubin–Tate theory
On the denominators of the special values of the partial zeta functions of real quadratic fields
ZoomHohto Bekki (MPIM Bonn)
A gentle introduction to non-abelian Hodge and P=W conjecture
Frankfurt, Robert-Mayer-Str. 10, Raum 711 großOberseminar Algebra und Geometrie
Alexandre Minets (MPI Bonn)
Purity for the flat cohomology
Heidelberg, Mathematikon, SR tbaTalk 5: Tim Holzschuh (Universität Heidelberg): Introduction to animated rings and cohomology of affine smooth groups (Part 1)
Arithmetic of critical p-adic L-functions
Heidelberg, Mathematikon, SR 8 INF 205, Heidelberg, GermanyTalk 7: Rustam Steingart: Big Galois representations
Anabelian geometry
Frankfurt, Robert-Mayer-Str. 10, Raum 711 großTalk 4: Leonie Scherer (Goethe Universität): Belyi’s theorem and tangential base-points
Talk 5: Marcin Lara (Goethe Universität): Consequences of Belyi’s theorem, direct sums and tensor products