Loading view.
Grigory Andreychev (Universität Bonn): Descent on Analytic Adic Spaces via Condensed Mathematics
Heidelberg, Mathematikon, SR A and LivestreamIn this talk, I am going to explain the main results of my recent preprint (arXiv:2105.12591). The primary goal will be to prove that for every affinoid analytic adic space $X$, pseudocoherent complexes, perfect complexes, and finite projective modules over $\mathcal{O}_X(X)$ form a stack with respect to the analytic topology on $X$. The proof relies on the new approach to analytic geometry developed by Clausen and Scholze by means of condensed mathematics; therefore, I will also explain how to apply their formalism of condensed analytic rings to the study of adic geometry.