Loading Events

« All Events

  • This event has passed.

Periods, Power Series, and Integrated Algebraic Numbers

May 24, 2023 at 16:0017:00 CEST

Oberseminar Algebra und Geometrie

Tobias Kaiser (Universität Passau)

Abstract:
Periods are defined as integrals of semialgebraic functions defined over the rationals. Periods form a countable ring not much is known about. Examples are given by taking the antiderivative of a power series which is algebraic over the polynomial ring over the rationals and evaluate it at a rational number. We follow this path and close these algebraic power series under taking iterated antiderivatives and nearby algebraic and geometric operations. We obtain a system of rings of power series whose coefficients form a countable real closed field. Using techniques from o-minimality we are able to show that every period belongs to this field. In the setting of o-minimality we define exponential integrated algebraic numbers and show that exponential periods and the Euler constant are exponential integrated algebraic number. Hence they are a good candiate for a natural number system extending the period ring and containing important mathematical constants.

Details

Date:
May 24, 2023
Time:
16:00 – 17:00 CEST

Venue

Frankfurt, Robert-Mayer-Str. 10, Raum 711 groß

Organizers

Alex Küronya
Martin Möller
Jakob Stix
Martin Ulirsch
Annette Werner