
Congruence modules and the Wiles–Lenstra–Diamond numerical criterion

in higher codimension, after Iyengar–Khare–Manning

Contact: Andrea Conti, andrea.conti@iwr.uni-heidelberg.de

The seminar will take place on Fridays, 9-11, in room SR8.

We will study the paper [IKM22]. In the following, all references are to this paper, unless

otherwise stated.

In the paper, the authors develop some commutative algebra tools that allow them to generalize

the “numerical criterion” of Wiles–Lenstra–Diamond, in order to prove integral R = T theorems

in the case when a suitably defined Wiles defect is positive. This generalization parallels the al-

ready known extension of the patching method to cases of positive defect by Calegari–Geraghty.

The authors give two examples of arithmetic applications of their result, proving integral R =

T results for Hecke algebras over PGL2 of a number field (conditionally on Langlands-type

conjectures), and for weight 1 Hecke eigensystems coming from the cohomology of Shimura

curves (unconditionally).

Below is a tentative program. The first 5 talks consist purely of commutative algebra, and

require no arithmetic input. Talks 6 and 7 provide the necessary input from the patching

method and the Galois deformation theory. Talks 8 and 9 give the setting for the two arithmetic

applications, and talk 10 deals with the proof of the main modularity result.

0. (15/11) Overview

1. (22/11) Congruence modules and Wiles defect [Sections 2,3]

Explain how to attach a congruence module ΨA(M) to a finitely generated module M over a

Noetherian local ring equipped with a so-called augmentation, i.e. a surjective local homomor-

phism λA : A → O to a discrete valuation ring O. Prove Theorem 2.5. Show that this notion

of congruence module recovers the classical one in the case of depth 0 (Proposition 2.10).

Define the Wiles defect δA(M) of M . Show the implications in the diagram of Section 3.3.

Prove the defect formula of Lemma 3.7.

One can consult [BH98] for many of the commutative algebra inputs.

2. (29/11) Cohen–Macaulay modules and complete intersection rings [Sections 4,5]

Make reminders about dualizing complexes and Cohen–Macaulay modules, and prove Propo-

sition 4.4. Show how to describe the congruence module of a Cohen–Macaulay module as the

cokernel of the adjoint of a map of Ext groups (Proposition 4.7). Prove that the cokernel

appearing in the defect formula from the previous talk is an Ext group.

Assuming that A is complete intersection, one can find another complete intersection C with a

particular shape, with a map C → A that identifies cotangent modules and, in particular, their

torsion parts ΦC and ΦA. Give the criterion for detecting when a map of complete intersections

is an isomorphism from the torsion in their cotangent modules (Lemma 5.10).

As for the previous section, [BH98] is a useful complementary reference.

3. (6/12) Tate resolutions [Section 6]

The material of this section is essentially extracted from Avramov’s book [Avr10, Section 6].

Explain the Tate construction of a resolution of a complete noetherian local ring A, and use it to

describe the graded O-algebra F ∗
A(O) (i.e the torsion part of the graded O-algebra Ext∗A(O,O))

for A ∈ CO(c) (Theorem 6.8). Give the criterion for detecting when A → B induces an isomor-

phism F ∗
B(O) ∼= F ∗

A(O) (Proposition 6.10), and the criterion for detecting complete intersections
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from the Tate resolution (Proposition 6.11). Section 6.12 can be skipped, as it reappears later

with more details.

4. (13/12) Congruence modules and Wiles defect under surjections [Sections 7,8]

Prove Theorem 7.4 about the invariance of the length of congruence modules along a surjection

A → B in OO(c), and deduce Corollary 7.5. Prove the invariance of the defect δ under quoti-

enting by a non-zero divisor (Theorem 8.2), via the relation between the congruence modules

in the same setting (Lemma 8.7).

5. (20/12) Wiles defect and free direct summands [Section 9]

Prove the criterion for detecting from the Wiles defect when a Cohen–Macaulay module over a

Gorenstein ring has a free direct summand (Theorem 9.2). Prove that a ring in O(c) is complete

intersection if and only if its Wiles defect vanishes (Theorem 9.5), and the characterization of

modules of Wiles defect 0.

6. (10/1) Patching [Sections 10,11]

Recall the patching constructions, following Section 10 and if necessary the references therein.

In particular, state and prove Theorem 10.6 on the construction of the patching functor from

the category of “patching systems”. Unless time allows, you can state without proof Theorem

11.3 on the compatibility of the patching construction with duals (Theorem 11.3). One can

consult [CG18] for more background on the patching method.

7. (17/1) Galois deformation conditions [Section 12]

(We might organize a preliminary talk on Galois deformations on the Wednesday before the

seminar.) Define minimally ramified local deformation rings, and recall the structure result

Proposition 12.1. Use the local conditions to define the relevant global deformation rings as

in Section 12.2, and give Proposition 12.3. Various definitions and statements are taken from

[CHT08].

8. (24/1) Hecke eigensystems and Galois representations for PGL2 [Section 13]

Define the orbifold YK attached to the algebraic group PGL2 over a number field F and to a

compact open subgroup K ⊂ PGL2(A∞
F ) (this corresponds to case (PGL2) from the beginning

of Part 3 of the paper). Define the Hecke algebra of this level, and state Conjecture A attaching

Galois representations to Hecke eigensystems. Rephrase it as an isomorphism in a suitable

derived category as in Proposition 13.6. For various statements concerning this setting, the

speaker can consult [NT16].

State Conjectures B (on the properties of the representations produced from Conjecture A),

C (on the vanishing of homology groups in certain degrees), and D (on the surjectivity of the

level-lowering map on homology groups).

9. (31/1) Weight 1 Hecke eigensystems and Galois representations for quaternion

algebras [Section 14]

This is the analogue of Section 13 in the case of weight 1 Hecke eigensystems for a ramified

quaternion algebra D (case (Wt1) from the beginning of Part 3 of the paper). Here YK is

replaced by the Shimura curve XD
K . Explain the setting and prove Theorem 14.5 (the analogue

of Conjecture A), Theorem 14.6 (the analogue of Conjecture B; only sketch the proof), and the

analogues of Conjectures C and D (see Section 14.3). Announce Theorem 14.9 and prove its

corollary, the mod ℓ modularity Theorem 14.10. A complementary reference in this setting is

[Box+21].

10. (7/2) Modularity [Section 15]

Prove the main modularity result, Theorem 15.1.
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