Definition and First Observations

Def. 1.1 A root datum is a quadruple \(\Phi = (X, R, X^\vee, R^\vee) \) where

- \(X, X^\vee \) free abelian groups of finite rank endowed with a perfect pairing \(\langle \cdot, \cdot \rangle : X \times X^\vee \to \mathbb{Z} \) (i.e., \(\langle \cdot, \cdot \rangle \) identifies each of \(X, X^\vee \) with the dual of the other)
- \(R \subseteq X, R^\vee \subseteq X^\vee \) finite subsets, in bijection via a map \(R \to R^\vee, \alpha \mapsto \alpha^\vee \)

subject to the following conditions:

For \(\alpha \in R \) define endomorphism

\[
S_\alpha : X \to X, \quad S_\alpha : X^\vee \to X^\vee,
\]

\[
S_\alpha(x) = x - \langle x, \alpha^\vee \rangle \alpha \quad \text{and} \quad S_\alpha^\vee(y) = y - \langle \alpha, y \rangle \alpha^\vee
\]

We demand for all \(\alpha \in R \)

- (RD1) \(\langle \alpha, \alpha^\vee \rangle = 2 \),
- (RD2) \(S_\alpha(R) \subseteq R \) and \(S_\alpha^\vee(R^\vee) \subseteq R^\vee \).

Obs. 1.2 (RD1) implies \(S_\alpha^2 = \text{id}_X \) and \(S_\alpha(\alpha) = -\alpha \)

for \(\alpha \in R \). In particular, \(S_\alpha \in \text{Aut}(X) \) and \(S_\alpha \) acts on \(R \) by permutation.

Proof. \(S_\alpha(S_\alpha(\alpha)) = S_\alpha(\alpha) = \langle S_\alpha(\alpha), \alpha^\vee \rangle \alpha \)

\[
= x - \langle x, \alpha^\vee \rangle \alpha - \langle x, \alpha^\vee \rangle \alpha + \langle x, \alpha^\vee \rangle \langle \alpha, \alpha^\vee \rangle = x
\]

\(S_\alpha(\alpha) = x - \langle \alpha, \alpha^\vee \rangle \alpha = -\alpha \).
Observation 1.3: To every root datum \(\Phi = (X, R, X^\vee, R^\vee) \) there is its dual root datum \(\Phi^d = (X^\vee, R^\vee, X, R) \).

Examples 1.4: (i) Endow \(X = X^\vee = \mathbb{Z}^n \) with the standard pairing and define

\[
R = R^\vee = \{ e_i - e_j \mid i \neq j \},
\]

where \(e_i \in \mathbb{Z}^n \) denotes the standard basis vectors.

(ii) Again consider \(X = X^\vee = \mathbb{Z}^n \). Now define

\[
R = \{ \pm 2e_i, \pm e_i \pm e_j \mid i \neq j \},
\]

\[
R^\vee = \{ \pm e_i, \pm e_i \pm e_j \mid i \neq j \}
\]

and a bijection \(\pm 2e_i \mapsto \pm e_i, \pm e_i \pm e_j \mapsto \pm e_i \pm e_j \).

§2 Weyl Group

Def 2.1 Define the Weyl group to be
\[W = W(\Phi) = \langle s_\alpha | \alpha \in \Phi \rangle \subseteq \text{Aut}(X). \]

Lemma 2.2 The Weyl group \(W \) is finite.

proof. Define the \(\mathbb{R} \)-vector spaces
\[V = \mathbb{R} \otimes_\mathbb{Z} X, \quad V^\vee = \mathbb{R} \otimes_\mathbb{Z} X^\vee. \]
The perfect pairing \(\langle , \rangle : X \times X^\vee \rightarrow \mathbb{Z} \) extends to a perfect pairing \(\langle , \rangle : V \times V^\vee \rightarrow \mathbb{R} \).
We regard \(\mathbb{R} \) resp. \(R^\vee \) as subsets of \(V \) resp. \(V^\vee \) and the Weyl group as subgroup \(W \subseteq \text{Aut}_\mathbb{R}(V) \) via the embedding
\[\text{Aut}_2(X) \rightarrow \text{Aut}_\mathbb{R}(V), \quad \psi \mapsto \text{id}_\mathbb{R} \circ \psi. \]
Denote by \(U = \text{span}_\mathbb{R}(R) \subseteq V \) (resp. \(U^\vee = \text{span}_\mathbb{R}(R^\vee) \subseteq V^\vee \)) the subspace of \(V \) (resp. \(V^\vee \)) spanned by \(R \) (resp. \(R^\vee \)).
Consider the \(\mathbb{R} \)-linear map
\[f: V \rightarrow V^\vee, \quad f(x) = \sum_{\alpha \in \Phi} \langle x, \alpha \rangle \alpha^\vee. \]
Using that \(s_\alpha \) permutes \(R^\vee \), we obtain
\[f(\alpha) = \frac{1}{2} \langle \alpha, f(\alpha) \rangle \alpha^\vee \quad (\alpha \in \Phi). \]
From
\[\langle x, f(x) \rangle = \sum_{\alpha \in \Phi} \langle x, \alpha^\vee \rangle \langle x, \alpha \rangle = \sum_{\alpha \in \Phi} \langle x, \alpha \rangle^2 \quad (\ast) \]
it follows \(0 < \langle \alpha, f(\alpha) \rangle \). Consequently, \(\text{im}(f) = U^\vee = f(U) \) and hence \(V = U + \ker(f) \). Moreover, \((\ast)\) implies
\[\ker(f) = \{ x \in V \mid \langle x, \alpha \rangle = 0 \text{ for all } \alpha \in \Phi \}. \]
We conclude that S_∞ acts on $\ker(f)$ as the identity and on U by permuting R. The assertion transfers to $W = \langle s_\infty | x \in R \rangle$. Thus, $\Phi \in W$ is completely determined by its permutation of R. As there are only finitely many permutations, W is finite.

Def 2.3 Given an Euclidean vector space $(E, (,))$ a **root system** Φ is a finite set of non-zero vectors satisfying

- Φ spans E.
- For every $\alpha \in \Phi$, the set Φ is closed under reflections $x \mapsto x - \frac{2(\alpha, x)}{\langle \alpha, \alpha \rangle} \alpha$ through the hyperplane perpendicular to α.
- For $\alpha, \beta \in \Phi$, the number $\frac{2(\alpha, \beta)}{\langle \alpha, \alpha \rangle}$ is an integer.

Obs 2.4 Given a root datum $\Phi = (X, R, X^\vee, R^\vee)$ let $U \subseteq R \otimes_X$ the subspace generated by R (as in the proof of Lemma 1.5). Pick a scalar product $(,)$ on U that is invariant under the Weyl group. (Such an invariant scalar product can be found; since the Weyl group is finite.) Then R is a root system in U. The automorphisms on U induced by $S_\infty (\alpha \in R)$ are the reflections in $(U, (,))$.
§ 3 System of positive roots & reduced root datum

Def 3.1 We call a root datum \(\Phi = (X, R, X^+, R^+) \) reduced if
\[2\alpha \not\in R \text{ for any root } \alpha \in R. \]

Def 3.2 Let \(W = W(\Phi) \) be the Weyl group and \((\cdot, \cdot) \) a \(W \)-inv.
scalar product on \(V = \mathbb{R} \otimes_\mathbb{Q} X \). We call \(R^+ \subseteq R \) a system of
positive roots if there ex. \(x \in V \) s.t. \((\alpha, x) > 0 \) for all \(\alpha \in R \)
and
\[R^+ = \{ \alpha \in R \mid (\alpha, x) > 0 \} \]
(or equivalently, if there ex. \(\lambda \in X^* \) s.t. \(\langle \alpha, \lambda \rangle \neq 0 \) for all \(\alpha \in R \)
and
\[R^+ = \{ \alpha \in R \mid \langle \alpha, \lambda \rangle > 0 \} \].

Obs 3.3 (1) The convex hull of \(R^+ \) in \(V \) does not contain \(0 \).
(2) \(R \) is the disjoint union of \(R^+ \) and \(-R^+ \).
(3) If \(\alpha, \beta \in R^+ \) s.t. \(\alpha + \beta \in R \) then \(\alpha + \beta \in R^+ \).
(4) \((R^+)^\vee \) is a system of positive roots in \(R^v \),
i.e., there is an \(x \in X \) s.t. \(\langle x, \alpha \rangle \neq 0 \)
for all \(\alpha \in R \) and
\[(R^+)^\vee = \{ \alpha \in R^v \mid \langle x, \alpha \rangle > 0 \} \].
§ 4 Two roots

Lemma 4.1 Let $\alpha, \beta \in \mathbb{R}$ be lin. indep. roots

(i) $\langle \alpha, \beta^* \rangle = 0 \iff \langle \beta, \alpha^* \rangle = 0$.

(ii) $\langle \alpha, \beta^* \rangle < \langle \beta, \alpha^* \rangle = 0, 1, 2, 3$.

If $|\langle \alpha, \beta^* \rangle | > 1$ then $|\langle \beta, \alpha^* \rangle | = 1$.

(iii) In the four cases of (i) the order of $s_\alpha s_\beta$ is, respectively, 2, 3, 4, 6.

proof. Denote $V = \mathbb{R}^2 \times \mathbb{R}$. s_α and s_β map $\text{span}_\mathbb{R}(\alpha, \beta) \subseteq V$ to itself. On the basis (α, β) of that space $s_\alpha s_\beta$ is rep. by

$$M_{\alpha \beta} = \begin{pmatrix} \langle \alpha, \beta^* \rangle & \langle \beta, \alpha^* \rangle - i \langle \beta, \alpha^* \rangle \\ - i \langle \alpha, \beta^* \rangle & 1 \end{pmatrix}.$$

As W is finite, $M_{\alpha \beta}^n = I_2$ for some $n \geq 1$.

If $\langle \alpha, \beta^* \rangle = 0$, the matrix is triangular and hence satisfies $M_{\alpha \beta}^n = I_2$ only if $\langle \beta, \alpha^* \rangle = 0$ too.

Likewise, one proves the converse direction of (i).

The eigenvalues λ_1, λ_2 of $M_{\alpha \beta}$ are two conjugate roots of unity. As $\text{tr}(M_{\alpha \beta}) = \lambda_1 + \lambda_2$, we have

$$|\text{tr}(M_{\alpha \beta})| = |\lambda_1 + \lambda_2| \leq |\lambda_1| + |\lambda_2| = 2.$$

As (i) does not have finite index and $M_{\alpha \beta}$ is not the identity matrix, not both eigenvalues can be 1.

Hence $\text{tr}(M_{\alpha \beta}) < 2$ and $\text{tr}(M_{\alpha \beta}) \in \{-2, -1, 0, 1\}$.

This implies (ii).

For (iii) note that any $c \in \text{Aut}(V)$ generated by s_α, s_β is completely determined by its behavior on $\text{span}_\mathbb{R}(\alpha, \beta)$.

Choose a W-inv. scalar product on V and decompose $V = \text{span}_\mathbb{R}(\alpha, \beta) \oplus \text{span}_\mathbb{R}(\alpha, \beta)^*$.
As \(\sigma \) and \(\tau \) act on \(\text{span}_\mathbb{R}(\alpha, \beta)^\perp \) as identity, \(\Phi \) is completely determined by its behavior on \(\text{span}_\mathbb{R}(\alpha, \beta) \).

In particular, to prove that \(\Sigma \Phi \) has order \(n \) it suffices to show that \(M \alpha \beta \) has order \(n \).

The four cases can be calculated "by hand". \(\square \)