Finite Type, Separated and Proper Morphisms

by Christopher Lang
Finite Type over k

Idea: a scheme with finite k-dimension.
Finite Type over k

Idea: a scheme with finite k-dimension.

- Affine Space
- Projective Space
- Cross: $k[XY]/(XY)$
- Affine line with double origin
- Curves
Finite Type over k

Idea: a scheme with finite k-dimension.

In general: locally of the form $\text{Spec}(k[X_1, \ldots, X_n]/\text{ideal})$
Morphisms of finite type

Idea: locally $\text{Spec} \left(A \to A[X_1, \ldots, X_n]/I \right)$
Morphisms of finite type

Idea: locally $\text{Spec} \left(A \to A[X_1, \ldots, X_n]/I \right)$

$f : X \to Y$ is locally of finite type, if

For any $\text{Spec}(A) \subseteq Y$ and for any $\text{Spec}(B) \subseteq f^{-1}(\text{Spec}(A))$, the algebra $A \to B$ is finitely generated
Morphisms of finite type

Idea: locally $\text{Spec} \left(A \to A[X_1, \ldots, X_n]/I \right)$

$f : X \to Y$ is locally of finite type, if

For any $\text{Spec}(A) \subseteq Y$ and for any $\text{Spec}(B) \subseteq f^{-1}(\text{Spec}(A))$, the algebra $A \to B$ is finitely generated

f is of finite type, if

it is locally of finite type and quasi-compact (i.e. preimages of q.c. opens are q.c.)
Properties of morphisms of finite type

Local on the target

It suffices that for some open cover $Y = \bigcup_i \text{Spec}(A_i)$ and $f^{-1}(\text{Spec}(A_i)) = \bigcup_j \text{Spec}(B_{ij})$, the morphisms $f|_{\text{Spec}(B_{ij})} : \text{Spec}(B_{ij}) \rightarrow \text{Spec}(A_i)$ come from finitely generated algebras $A_i \rightarrow B_{ij}$.

Stable under composition

Proof: Reduce to affine schemes. Now, if $A \rightarrow B$ and $B \rightarrow C$ are finitely generated algebras, then $A \rightarrow C$ is as well.
Properties of morphisms of finite type

Local on the target

It suffices that for some open cover \(Y = \bigcup_i \text{Spec}(A_i) \) and \(f^{-1}(\text{Spec}(A_i)) = \bigcup_j \text{Spec}(B_{ij}) \), the morphisms \(f|_{\text{Spec}(B_{ij})} : \text{Spec}(B_{ij}) \to \text{Spec}(A_i) \) come from finitely generated algebras \(A_i \to B_{ij} \).

Stable under composition

Proof: Reduce to affine schemes. Now, if \(A \to B \) and \(B \to C \) are fin. gen. algebras, \(A \to C \) is as well.
Properties of morphisms of finite type

Stable under base change

\[X \times_Y Z \rightarrow X \]
\[\quad \text{of finite type} \]
\[\quad \downarrow f \]
\[Z \rightarrow Y \]
Properties of morphisms of finite type

Stable under base change

Proof idea: Reduce to affine schemes. If $A \rightarrow B$ is a fin. gen. algebra, then $C \rightarrow B \otimes_A C$ is as well for any A-algebra C (with generators $b_i \otimes 1_C$)
Question: Which schemes should be “haussdorff” and which not?

- Affine Space
- Projective Space
- Cross: \(k[XY]/(XY)\)
- Affine line with double origin
- Curves
„Hausdorff“ schemes

Question: Which schemes should be „hausdorff“ and which not?

- Affine Space
- Projective Space
- Cross: $k[XY]/(XY)$
- Affine line with double origin
- Curves

Problem: Schemes are almost never hausdorff in the usual sense, as there are generic points etc. We need a different definition for a scheme to be „hausdorff“.
X is Hausdorff
\iff The diagonal $\Delta_X \subseteq X \times X$ is closed
Hausdorff spaces

topological

\[X \text{ is Hausdorff} \iff \text{The diagonal } \Delta_X \subseteq X \times X \text{ is closed} \]
\[\iff \text{For every space } Y \text{ and map } f : Y \to X, \text{ the graph } \Gamma_f \subseteq Y \times X \text{ is closed} \]
Hausdorff spaces

topological

X is Hausdorff
\iff The diagonal $\Delta_X \subseteq X \times X$ is closed
\iff For every space Y and map $f : Y \to X$, the graph $\Gamma_f \subseteq Y \times X$ is closed
\iff For all maps $f, g : Y \to X$, the equalizer $\{ y \in Y : f(y) = g(y) \} \subseteq Y$ is closed
Let $X \rightarrow S$ be a scheme over S.

$\Delta_X : X \rightarrow X \times_S X$ is called the \textit{diagonal} morphism of X (over S)
Let $X \to S$ be a scheme over S.

$\Delta_X : X \to X \times_S X$ is called the *diagonal* morphism of X (over S)
Graph as a morphism

Let $f : X \to Y$ be a morphism of S-schemes.

\[
\begin{array}{c}
X \\
\downarrow f \\
X \times_S Y \\
\downarrow \Gamma_f \\
Y \\
\downarrow \Gamma_f \\
S
\end{array}
\]

$\Gamma_f : X \to X \times_S Y$ is called the graph (morphism) of f
Let $f, g : X \to Y$ be two S-morphisms.

Idea: $\text{Eq}(f, g) = \{x \in X : f(x) = g(x)\}$. This is not a scheme...

Solution: Use T-valued points! (For some S-scheme T)

The equalizer of f and g is a scheme $\text{Eq}(f, g)$ over S together with a morphism $i : \text{Eq}(f, g) \to X$ with $\text{Eq}(f, g) \times_S T \to \{x \in X_S(T) : f(x) = g(x)\}$. (in $Y_S(T)$)
Let $f, g : X \to Y$ be two S-morphisms.

Idea: $\text{Eq}(f, g) = \{x \in X : f(x) = g(x)\}$. This is not a scheme...

Solution: Use T-valued points! (For some S-scheme T)

$$
\begin{array}{cc}
T & \xrightarrow{i} \text{Eq}(f, g) \\
\text{Eq}(f, g) & \xleftarrow{i} X & \xrightarrow{f} Y \\
X & \xleftarrow{g} Y
\end{array}
$$
Equalizer scheme

Let $f, g : X \rightarrow Y$ be two S-morphisms.

Idea: $\text{Eq}(f, g) = \{x \in X : f(x) = g(x)\}$. This is not a scheme...

Solution: Use T-valued points! (For some S-scheme T)

$$
\begin{array}{ccc}
T & \longrightarrow & \text{Eq}(f, g) \\
& \downarrow i & \nearrow f \\
& & X \\
& \downarrow g & \searrow Y
\end{array}
$$

The equalizer of f and g is a scheme $\text{Eq}(f, g)$ over S together with a morphism $i : \text{Eq}(f, g) \rightarrow X$ with

$$
\text{Eq}(f, g)_S(T) \xrightarrow{i} \{x \in X_S(T) : f \circ x = g \circ x \text{ (in } Y_S(T))\}
$$
Separated morphisms
The right way to define hemdorff for schemes

A morphism $Y \to S$ is *separated*, if

the three equivalent conditions are true:

1. $\Delta_Y : Y \to Y \times_S Y$ is a closed immersion
2. For all $f : X \to Y$, the graph $\Gamma_f : X \to X \times_S Y$ is a closed immersion
3. For all $f, g : X \to Y$, the equalizer $i : \text{Eq}(f, g) \to X$ is a closed immersion
A morphism $Y \to S$ is separated, if

the three equivalent conditions are true:

1. $\Delta_Y : Y \to Y \times_S Y$ is a closed immersion
2. For all $f : X \to Y$, the graph $\Gamma_f : X \to X \times_S Y$ is a closed immersion
3. For all $f, g : X \to Y$, the equalizer $i : \text{Eq}(f, g) \to X$ is a closed immersion

A S-scheme Y is separated, if $Y \to S$ is a separated morphism.
Affine schemes: Let $\text{Spec}(A) \to \text{Spec}(R)$.

The map $a \otimes a' \mapsto aa'$ is surjective $\Rightarrow \Delta \text{Spec}(A)$ is a closed immersion $\Rightarrow \text{Spec}(A)$ is separated (over R).

In particular: A^n_R is separated (over the ring R).

A bit more complicated, but true: P^n_R is separated (over the ring R).
Examples of separated schemes

Affine schemes: Let $\text{Spec}(A) \to \text{Spec}(R)$. Then $\Delta_{\text{Spec}(A)}$ comes from

The map $a \otimes a' \mapsto aa'$ is surjective $\Rightarrow \Delta_{\text{Spec}(A)}$ is a closed immersion $\Rightarrow \text{Spec}(A)$ is separated (over R).

In particular: A^n_R is separated (over the ring R).

A bit more complicated, but true: P^n_R is separated (over the ring R).
Examples of separated schemes

Affine schemes: Let $\text{Spec}(A) \rightarrow \text{Spec}(R)$. Then $\Delta_{\text{Spec}(A)}$ comes from

$$\begin{array}{ccc}
R & \rightarrow & A \\
\downarrow & & \downarrow \\
A & \rightarrow & A \otimes_R A
\end{array}$$

The map $a \otimes a' \mapsto aa'$ is surjective $\Rightarrow \Delta_{\text{Spec}(A)}$ is a closed immersion $\Rightarrow \text{Spec}(A)$ is separated (over R)
Affine schemes: Let $\text{Spec}(A) \to \text{Spec}(R)$. Then $\Delta_{\text{Spec}(A)}$ comes from

The map $a \otimes a' \mapsto aa'$ is surjective \Rightarrow $\Delta_{\text{Spec}(A)}$ is a closed immersion \Rightarrow $\text{Spec}(A)$ is separated (over R)

In particular: \mathbb{A}^n_R is separated (over the Ring R)
Examples of separated schemes

Affine schemes: Let $\text{Spec}(A) \to \text{Spec}(R)$. Then $\Delta_{\text{Spec}(A)}$ comes from

The map $a \otimes a' \mapsto aa'$ is surjective $\Rightarrow \Delta_{\text{Spec}(A)}$ is a closed immersion $\Rightarrow \text{Spec}(A)$ is separated (over R)
In particular: \mathbb{A}^n_R is separated (over the Ring R)
A bit more complicated, but true: \mathbb{P}^n_R is separated (over the Ring R)
Let X be the affine line (over k) with double origin, covered by $U \cong V \cong \mathbb{A}^1_k$. The affine line with double origin
Let X be the affine line (over k) with double origin, covered by $U \cong V \cong \mathbb{A}^1_k$.

We check the equalizer condition:

Let $f : \mathbb{A}^1_k \rightarrow U \hookrightarrow X$ and $g : \mathbb{A}^1_k \rightarrow V \hookrightarrow X$ be the „usual“ morphisms.

\[
\begin{array}{cccc}
& & & X \\
& & \sim & \hookrightarrow \ & U \\
\end{array}
\]
A counterexample
The affine line with double origin

Let X be the affine line (over k) with double origin, covered by $U \cong V \cong \mathbb{A}^1_k$

We check the equalizer condition:

Let $f : \mathbb{A}^1_k \to U \hookrightarrow X$ and $g : \mathbb{A}^1_k \to V \hookrightarrow X$ be the “usual” morphisms

Then $\text{Eq}(f, g) = U \cap V \cong D(0) \subset \mathbb{A}^1_k$, which is not a closed immersion!
Properties of separated morphisms

Let $X \to S$ be separated. (Hence $\Delta : X \to X \times_S X$ is a closed immersion.)

Stable under base change

If $S \to S'$ is a base change, then $\Delta' : X \times_S S' \to (X \times_S S') \times_{S'} (X \times_S S') \cong (X \times_S X) \times_S S'$ is just the base change of Δ

(Remember: $S' \times_{S'} X \cong X$)
Properties of separated morphisms

Let $X \to S$ be separated. (Hence $\Delta : X \to X \times_S X$ is a closed immersion.)

Stable under base change

If $S \to S'$ is a base change, then $\Delta' : X \times_S S' \to (X \times_S S') \times_{S'} (X \times_S S') \cong (X \times_S X) \times_S S'$ is just the base change of Δ

(Remember: $S' \times_{S'} X \cong X$)

Local on the target

$X \times_S X$ can be computed locally in S, and closed immersions (here: of Δ) are local on the target.
Properties of separated morphisms

Stable under composition

Let \(f : X \rightarrow Y \) and \(g : Y \rightarrow Z \) be separated.

\[
\begin{array}{cccccc}
X & \xrightarrow{\Delta_f} & X \times_YY & \xrightarrow{\Delta_g} & Y \\
\downarrow^{\Delta_{gof}} & & \downarrow^{\Box} & & \downarrow^{\Delta_g} \\
X \times_YY & \xrightarrow{} & Y \times_YY
\end{array}
\]

(Closed immersions are red!)
Properties of separated morphisms

Stable under composition

Let $f : X \to Y$ and $g : Y \to Z$ be separated.

(Closed immersions are red!)
Properties of separated morphisms

Stable under composition

Let $f : X \to Y$ and $g : Y \to Z$ be separated.

\[X \xrightarrow{\Delta_f} X \times_Y X \xrightarrow{\square} Y \]

\[X \times_Z X \xrightarrow{\Delta_{gof}} Y \times_Z Y \]

(Closed immersions are red!)
Which schemes should be „compact“?

No:
- Affine space \mathbb{A}^n_k (since \mathbb{C}^n is not compact)

Yes:
- Projective space \mathbb{P}^n_k (as \mathbb{S}^n is compact)
Which schemes should be "compact"?

No:
Affine space \mathbb{A}^n_k (since \mathbb{C}^n is not compact)

Yes:
Projective space \mathbb{P}^n_k (as S^n is compact)
Closed subspaces of compact spaces
Proper maps

In topology:

The map \(f : X \to Y \) is proper, if

Preimages of compact sets are compact
Proper maps

In topology:

The map \(f : X \to Y \) is proper, if

Preimages of compact sets are compact

Hence: \(X \) is compact \(\iff \) \(X \to \{ * \} \) is proper
Proper maps

In topology:

The map $f : X \to Y$ is proper, if

Preimages of compact sets are compact

Hence: X is compact $\iff X \to \{\ast\}$ is proper

Problem for schemes: Too many morphisms are “proper” in the usual sense (namely all quasi-compact morphisms)
Proper maps

In topology:

The map \(f : X \rightarrow Y \) is proper, if

Preimages of compact sets are compact

Hence: \(X \) is compact \(\iff \) \(X \rightarrow \{\ast\} \) is proper

Problem for schemes: Too many morphisms are „proper“ in the usual sense (namely all quasi-compact morphisms)

In good circumstances (locally compact and hausdorff):
\(f \) is proper \(\iff \) \(f \) is universally closed (i.e. closed after any base change)
A morphism of schemes is proper, if it is

1. of finite type,
A morphism of schemes is proper, if it is

1. of finite type,
2. separated,
A morphism of schemes is proper, if it is

1. of finite type,
2. separated,
3. universally closed.
A morphism of schemes is proper, if it is

1. of finite type,
2. separated,
3. universally closed.

Recall: $f : X \to Y$ is universally closed, if for all schemes Z the base change $f_Z : X \times_Y Z \to Z$ is closed (as a map of topological spaces).
A morphism of schemes is proper, if it is

1. of finite type,
2. separated,
3. universally closed.

Recall: $f : X \to Y$ is universally closed, if for all schemes Z the base change $f_Z : X \times_Y Z \to Z$ is closed (as a map of topological spaces).

Proper morphisms are

stable under composition, base change and local on the target.
Examples of proper morphisms

Projective space $\mathbb{P}^n_k \to \text{Spec}(k)$ and closed immersions are proper.
Examples of proper morphisms

Projective space $\mathbb{P}^n_k \to \text{Spec}(k)$ and closed immersions are proper.

Affine space $\mathbb{A}^1_k \to \text{Spec}(k)$ is *not* universally closed (and hence not proper):
Examples of proper morphisms

Projective space $\mathbb{P}^n_k \to \text{Spec}(k)$ and closed immersions are proper.

Affine space $\mathbb{A}^1_k \to \text{Spec}(k)$ is not universally closed (and hence not proper):

Base change by \mathbb{A}^1_k:
Examples of proper morphisms

Projective space $\mathbb{P}^n_k \to \text{Spec}(k)$ and closed immersions are proper.

Affine space $\mathbb{A}^1_k \to \text{Spec}(k)$ is not universally closed (and hence not proper):

Base change by \mathbb{A}^1_k:

$$
\begin{align*}
\mathbb{A}^2_k & \longrightarrow \mathbb{A}^1_k \\
\downarrow & \quad \downarrow \\
\mathbb{A}^1_k & \longrightarrow \text{Spec}(k)
\end{align*}
$$