
Algebraic Group actions
Manuel Hoff

Fix an algebraically closed field k.

Notation 0.1. We use the following notation:

• The terms “algebraic group/scheme” and “algebra” mean “k-(group) scheme of finite type” and “finitely
generated k-algebra”.

• We denote by Alg the category of algebras.
• We will not distinguish between an algebraic scheme and its associated functor Alg → Set.

1 Recollection of (set-theoretic) group actions
Let G be an (abstract) group.

Definition 1.1. Let X be a set. A group action of G on X is a map of sets

G×X → X, (g, x) 7→ g.x

that satisfies the following properties:

• 1.x = x for all x ∈ X.
• (gh).x = g.(h.x) for all g, h ∈ G and x ∈ X.

Giving a group action of G on X is equivalent to giving a map of groups G → SX where SX denotes the
symmetric group on the set X. A set together with a group action by G is also called a G-set.

Definition 1.2. Let X be a G-set and let x ∈ X. Associated to x we have the following data:

• The subgroup
StabG(x) :=

{
g ∈ G

∣∣ g.x = x
}
⊆ G

is called the stabilizer of x in G.
• The subset

G.x :=
{
g.x

∣∣ g ∈ G
}
⊆ X

is called the orbit of x under the action of G.

We have the following elementary fact:

Lemma 1.3. Let X be a G-set and let x ∈ X. Then the map

G/ StabG(x) → G.x, g StabG(x) 7→ g.x

is a well-defined bijection.

2 Algebraic group actions
Let G be an algebraic group.

Definition 2.1. Let X be an algebraic scheme. An algebraic group action of G on X is a map of algebraic
schemes

G×X → X, (g, x) 7→ g.x

such that for every R ∈ Alg the induced map on points G(R) ×X(R) → X(R) is an action of the (abstract)
group G(R) on the set X(R). An algebraic scheme together with an algebraic group action by G is also called
an algebraic G-scheme.

The goal is now to define stabilizers and orbits for algebraic group actions. For the rest of the section, fix an
algebraic G-scheme X and a k-valued point x ∈ X(k) and denote the action map G → X, g 7→ g.x by ax.
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2.1 Stabilizers
Definition 2.2. The stabilizer of x in G is the subfunctor (of groups) StabG(x) ⊆ G that is defined by

StabG(x)(R) := StabG(R)(x) ⊆ G(R)

for all R ∈ Alg. Note that we (maybe confusingly) use the same notation for x and its image in X(R).

Lemma 2.3. StabG(x) ⊆ G is a (closed) algebraic subgroup.

Proof. We have a pullback diagram of functors Alg → Set

StabG(x) G

Spec(k) X

ax

x

implying that StabG(x) is an algebraic scheme as desired.

2.2 Orbits
We now also want to define orbits for algebraic group actions. Before we do this we need one definition and one
theorem that we treat as a blackbox.

Definition 2.4. A map of algebraic schemes f : X → Y is called surjective if the induced map on k-valued
points X(k) → Y (k) is surjective (or equivalently if the underlying map of topological spaces |X| → |Y | is
surjective).

Theorem 2.5 (Generic flatness). Let f : X → Y be a dominant map of algebraic schemes. Then there exists a
(set-theoretically) dense open subscheme U ⊆ Y such that the induced map f−1(U) → U is surjective.

Now we can state and prove our main result.

Lemma 2.6. Suppose that G is smooth. Then there exists a unique locally closed subscheme G.x ⊆ X with the
following properties:

• The map ax : G → X factors over G.x.
• The resulting map ax : G → G.x is surjective (in the sense that it is surjective on k-valued points).
• G.x is reduced.

Proof. Let Z ⊆ X be the closure of the image of the map of topological spaces |ax| : |G| → |X|, equipped with
the reduced subscheme structure. As G is reduced the map ax factors over Z ⊆ X and the resulting map
ax : G → Z is dominant.

We now claim that Z is stable under the G-action on X, i.e. that the action map G×X → X restricts to a
map G× Z → Z. As G× Z is reduced it suffices to “show this on k-valued points” (meaning it suffices to show
that g.z ∈ Z(k) for all g ∈ G(k) and z ∈ Z(k)). To see this, fix g ∈ G(k) and consider the commutative diagram

G X

G X

ax

g g

ax

where we note that the vertical maps are isomorphisms. As Z is defined as the closure of the (topological) image
of either of the horizontal maps, this implies that g.Z = Z.

Now we apply the generic flatness theorem to ax : G → Z to obtain an open subscheme U ⊆ Z such that the
map ax : a

−1
x (U) → U is surjective.

Now, for every g ∈ G(k), we have a commutative diagram

a−1
x (U) U

g · a−1
x (U) = a−1

x (g.U) g.U

ax

g g

ax
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where again the vertical maps are isomorphisms. Thus also the map ax : g · α−1(U) → g.U is surjective. Taking
the union over all g we see that also

ax : G =
⋃

g∈G(k)

g · a−1
x (U) →

⋃
g∈G(k)

g.U =: V

is surjective.
Thus we see that we can take G.x := V (this is a locally closed subscheme of X because it is an open subscheme

of Z and Z is a closed subscheme of X). The uniqueness assertion is clear because the reduced locally closed
subscheme G.x ⊆ X is determined by its set of k-valued points (G.x)(k) which is determined by the second
assumption.

Remark 2.7. We make the following remarks.

• When G is not smooth then the map ax : G → X may fail to factor over Z. However there still exists a
sensible definition of orbit, but this orbit may not be reduced anymore.

• G.x is always equidimensional (because G acts on it and this action is transitive on k-rational points).

Lemma 2.8 (Closed orbit Lemma). Suppose that G.x is of minimal dimension among the G.y for y ∈ X(k).
Then G.x ⊆ X is a closed subscheme.

Proof. Let Z ⊆ X be defined as in the proof of the previous Lemma. We need to show that G.x = Z. So suppose
that this is not the case.

Then there exists y ∈ Z(k)\(G.x)(k). The orbit G.y ⊆ Z is disjoint from G.x, implying that dimG.y < dimG.x
and yielding a contradiction.

2.3 Examples
Let’s end with two examples:

Example 2.9. Let G := GL2 and X = P1 (so that P1(R) is the set of all rank 1 direct summands L of R2).
Then there is a natural action of G on X (elements in GL2(R) can be considered as automorphisms of R2).

This action has only one orbit and the stabilizer of the representative [1, 0] ∈ P1(k) is given by

StabG
(
[1, 0]

)
(R) =

{(
a b
c d

) ∣∣∣ c = 0
}
.

Example 2.10. Suppose that k is of positive characteristic p. Let G := µp and X := A1 and define an action
of G on X by

g.x := g · x.

Let x := 1 ∈ A1(k). Then the topological image of the action map ax : G → X is just given by the single point
x again (or more precisely the closed point of |X| that corresponds to x). But the action map ax : G → X does
not factor over V (t− 1) ⊆ X.

To see this, consider R := k[ε]/(ε2) ∈ Alg and the R-valued point g := 1 + ε ∈ G(R). Then we have

ax(g) = (1 + ε) · 1 = 1 + ε /∈ V (t− 1)(R).
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