Algebraic Group actions

Manuel Hoff

Fix an algebraically closed field k.

Notation 0.1. We use the following notation:

- The terms "algebraic group/scheme" and "algebra" mean "k-(group) scheme of finite type" and "finitely generated k-algebra".
- We denote by Alg the category of algebras.
- We will not distinguish between an algebraic scheme and its associated functor $Alg \rightarrow Set$.

1 Recollection of (set-theoretic) group actions

Let G be an (abstract) group.

Definition 1.1. Let X be a set. A group action of G on X is a map of sets

$$G \times X \to X, \qquad (g, x) \mapsto g.x$$

that satisfies the following properties:

- 1.x = x for all $x \in X$.
- (gh).x = g.(h.x) for all $g, h \in G$ and $x \in X$.

Giving a group action of G on X is equivalent to giving a map of groups $G \to S_X$ where S_X denotes the symmetric group on the set X. A set together with a group action by G is also called a G-set.

Definition 1.2. Let X be a G-set and let $x \in X$. Associated to x we have the following data:

• The subgroup

$$\operatorname{Stab}_G(x) \coloneqq \{g \in G \mid g.x = x\} \subseteq G$$

is called the *stabilizer* of x in G.

• The subset

$$G.x \coloneqq \left\{ g.x \mid g \in G \right\} \subseteq X$$

is called the orbit of x under the action of G.

We have the following elementary fact:

Lemma 1.3. Let X be a G-set and let $x \in X$. Then the map

 $G/\operatorname{Stab}_G(x) \to G.x, \qquad g\operatorname{Stab}_G(x) \mapsto g.x$

is a well-defined bijection.

2 Algebraic group actions

Let G be an algebraic group.

Definition 2.1. Let X be an algebraic scheme. An *algebraic group action of* G *on* X is a map of algebraic schemes

$$G \times X \to X, \qquad (g, x) \mapsto g.x$$

such that for every $R \in Alg$ the induced map on points $G(R) \times X(R) \to X(R)$ is an action of the (abstract) group G(R) on the set X(R). An algebraic scheme together with an algebraic group action by G is also called an *algebraic G-scheme*.

The goal is now to define stabilizers and orbits for algebraic group actions. For the rest of the section, fix an algebraic G-scheme X and a k-valued point $x \in X(k)$ and denote the action map $G \to X$, $g \mapsto g.x$ by a_x .

2.1 Stabilizers

Definition 2.2. The stabilizer of x in G is the subfunctor (of groups) $\operatorname{Stab}_G(x) \subseteq G$ that is defined by

$$\operatorname{Stab}_G(x)(R) \coloneqq \operatorname{Stab}_{G(R)}(x) \subseteq G(R)$$

for all $R \in Alg$. Note that we (maybe confusingly) use the same notation for x and its image in X(R).

Lemma 2.3. $\operatorname{Stab}_G(x) \subseteq G$ is a (closed) algebraic subgroup.

Proof. We have a pullback diagram of functors $Alg \rightarrow Set$

$$\begin{array}{ccc} \operatorname{Stab}_{G}(x) & \longrightarrow & G \\ & & & & \downarrow \\ & & & \downarrow \\ \operatorname{Spec}(k) & \overset{x}{\longrightarrow} & X \end{array}$$

implying that $\operatorname{Stab}_G(x)$ is an algebraic scheme as desired.

2.2 Orbits

We now also want to define orbits for algebraic group actions. Before we do this we need one definition and one theorem that we treat as a blackbox.

Definition 2.4. A map of algebraic schemes $f: X \to Y$ is called *surjective* if the induced map on k-valued points $X(k) \to Y(k)$ is surjective (or equivalently if the underlying map of topological spaces $|X| \to |Y|$ is surjective).

Theorem 2.5 (Generic flatness). Let $f: X \to Y$ be a dominant map of algebraic schemes. Then there exists a (set-theoretically) dense open subscheme $U \subseteq Y$ such that the induced map $f^{-1}(U) \to U$ is surjective.

Now we can state and prove our main result.

Lemma 2.6. Suppose that G is smooth. Then there exists a unique locally closed subscheme $G.x \subseteq X$ with the following properties:

- The map $a_x \colon G \to X$ factors over G.x.
- The resulting map $a_x \colon G \to G.x$ is surjective (in the sense that it is surjective on k-valued points).
- G.x is reduced.

Proof. Let $Z \subseteq X$ be the closure of the image of the map of topological spaces $|a_x|: |G| \to |X|$, equipped with the reduced subscheme structure. As G is reduced the map a_x factors over $Z \subseteq X$ and the resulting map $a_x: G \to Z$ is dominant.

We now claim that Z is stable under the G-action on X, i.e. that the action map $G \times X \to X$ restricts to a map $G \times Z \to Z$. As $G \times Z$ is reduced it suffices to "show this on k-valued points" (meaning it suffices to show that $g.z \in Z(k)$ for all $g \in G(k)$ and $z \in Z(k)$). To see this, fix $g \in G(k)$ and consider the commutative diagram

$$\begin{array}{ccc} G & \stackrel{a_x}{\longrightarrow} & X \\ & \downarrow^g & & \downarrow^g \\ G & \stackrel{a_x}{\longrightarrow} & X \end{array}$$

where we note that the vertical maps are isomorphisms. As Z is defined as the closure of the (topological) image of either of the horizontal maps, this implies that g.Z = Z.

Now we apply the generic flatness theorem to $a_x \colon G \to Z$ to obtain an open subscheme $U \subseteq Z$ such that the map $a_x \colon a_x^{-1}(U) \to U$ is surjective.

Now, for every $g \in G(k)$, we have a commutative diagram

$$\begin{array}{c} a_x^{-1}(U) \xrightarrow{a_x} U \\ \downarrow^g & \downarrow^g \\ g \cdot a_x^{-1}(U) = a_x^{-1}(g.U) \xrightarrow{a_x} g.U \end{array}$$

where again the vertical maps are isomorphisms. Thus also the map $a_x: g \cdot \alpha^{-1}(U) \to g.U$ is surjective. Taking the union over all g we see that also

$$a_x \colon G = \bigcup_{g \in G(k)} g \cdot a_x^{-1}(U) \to \bigcup_{g \in G(k)} g.U \eqqcolon V$$

is surjective.

Thus we see that we can take $G.x \coloneqq V$ (this is a locally closed subscheme of X because it is an open subscheme of Z and Z is a closed subscheme of X). The uniqueness assertion is clear because the reduced locally closed subscheme $G.x \subseteq X$ is determined by its set of k-valued points (G.x)(k) which is determined by the second assumption.

Remark 2.7. We make the following remarks.

- When G is not smooth then the map $a_x: G \to X$ may fail to factor over Z. However there still exists a sensible definition of orbit, but this orbit may not be reduced anymore.
- G.x is always equidimensional (because G acts on it and this action is transitive on k-rational points).

Lemma 2.8 (Closed orbit Lemma). Suppose that G.x is of minimal dimension among the G.y for $y \in X(k)$. Then $G.x \subseteq X$ is a closed subscheme.

Proof. Let $Z \subseteq X$ be defined as in the proof of the previous Lemma. We need to show that G.x = Z. So suppose that this is not the case.

Then there exists $y \in Z(k) \setminus (G.x)(k)$. The orbit $G.y \subseteq Z$ is disjoint from G.x, implying that dim $G.y < \dim G.x$ and yielding a contradiction.

2.3 Examples

Let's end with two examples:

Example 2.9. Let $G \coloneqq \operatorname{GL}_2$ and $X = \mathbf{P}^1$ (so that $\mathbf{P}^1(R)$ is the set of all rank 1 direct summands L of R^2). Then there is a natural action of G on X (elements in $\operatorname{GL}_2(R)$ can be considered as automorphisms of R^2).

This action has only one orbit and the stabilizer of the representative $[1,0] \in \mathbf{P}^1(k)$ is given by

$$\operatorname{Stab}_G([1,0])(R) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \middle| c = 0 \right\}.$$

Example 2.10. Suppose that k is of positive characteristic p. Let $G \coloneqq \mu_p$ and $X \coloneqq \mathbf{A}^1$ and define an action of G on X by

$$g.x \coloneqq g \cdot x.$$

Let $x := 1 \in \mathbf{A}^1(k)$. Then the topological image of the action map $a_x : G \to X$ is just given by the single point x again (or more precisely the closed point of |X| that corresponds to x). But the action map $a_x : G \to X$ does not factor over $V(t-1) \subseteq X$.

To see this, consider $R := k[\varepsilon]/(\varepsilon^2) \in Alg$ and the *R*-valued point $g := 1 + \varepsilon \in G(R)$. Then we have

$$a_x(g) = (1+\varepsilon) \cdot 1 = 1 + \varepsilon \notin V(t-1)(R).$$