Groups of multiplicative type
- base field \(k \) algebraically closed
- all algebraic groups affine: \(G = \text{Spec} A \)

Definition
An algebraic group is of multiplicative type if it becomes diagonalizable over the separable closure of the base field \(k \). (i.e. \(G_{k^{sep}} \cong \bigotimes \mathbb{A}_k \text{diag.} \))

\(k \text{ alg. closed} \Rightarrow \text{ multiplicative type} = \text{ diagonalizable} \)

Hence:

- **Diagonalizable Groups**
 - \(V \) always finite dimensional \(k \)-vector space

(A) Characters & diagonalizable representations

Recall A.1.
A morphism \(r: G \to GL_V \cong GL_n \) is called a representation.

Definition A.2.
A 1-dim. representation (i.e. \(\dim V = 1 \))

\(\chi: G \to GL_1 \cong \mathbb{G}_m \)

is called a character of \(G \).

Remark A.3. Group-like elements

\(\chi: G \to \mathbb{G}_m \) (k-scheme morphism resp. \(m, e, i \))

\(\chi: k[C(T^{-1})] \to A \)

(i.e. given by \(T \mapsto a \))

\(a \).
Obtain commutative group structure by \(\mathcal{X} + \mathcal{Z} : \text{GL}(R) \to R^x \),
\(g \mapsto \chi(g) \mathcal{X}(g) \)
\(\chi(g) = \text{abelian group of } \mathcal{X} \text{ on } \mathcal{G} \)

Example A.4. Diagonal representations

Let \(V = \mathbb{C}^n \)

1) \(\chi : \mathcal{G} \to \text{GL}(n) \) defines representation \(\rho \) of \(\mathcal{G} \) on \(V \) by

\[
\rho : \mathcal{G} \to \text{GL}(n) \quad (g) \to \begin{pmatrix} \chi_1(g) & \cdots & \chi_n(g) \end{pmatrix} \in \text{GL}(n) \]

i.e. \(\rho(g) \cdot v = \chi(g)
\text{V} \quad (\forall g \in \mathcal{G}, \forall v \in \mathcal{V}) \)

"\(\mathcal{G} \) acts on \(\mathcal{V} \) through \(\chi" \)

2) More generally: \(\chi_1, \ldots, \chi_n \) \((\forall i = 1 \text{ allowed}) \)

\[
\bigoplus_{i=1}^{n} \chi_i = \rho : \mathcal{G} \to \text{GL}(n) \quad (g) \to \begin{pmatrix} \chi_1(g) & \cdots & \chi_n(g) \end{pmatrix} \in \text{GL}(n) \]

Definition A.5: eigenspace

\((V, \chi) : \mathcal{G} \to \text{GL}(n) \), \(Z \in \chi(\mathcal{G}) \)

If there exists \(\forall v \in \mathcal{V} \) st. \(\forall g \in \mathcal{G} \)

\[
\rho(g) \cdot v = \chi(g)
\text{V} \quad (\forall v \in \mathcal{V}) \]

then "\(\mathcal{G} \) acts on \(\mathcal{V} \) through \(\chi" \)

\(V_\chi = \{ v \in \mathcal{V} \mid \rho(g) \cdot v = \chi(g)
\text{V} \quad (\forall v \in \mathcal{V}) \}

"eigenspace for \(\mathcal{G} \) with character \(\chi" \)
Example: \(r = \bigoplus_{i_1 = 1}^n X_i \) (as in A.4.2) \(\Rightarrow \) \(e_i \in k^n \) is eigenvector of \(r \) corresponding to \(X_i \) \(\Rightarrow \) \(V = \bigoplus_{\chi \in \chi(G)} V_\chi \) (almost all \(V_\chi \) zero)

Question: Let \((V_1, r) : G \rightarrow GL(V)\) be arbitrary under which assumption there exists a basis for \(V \) s.t. \(r(G_1) \in D_n \cong GL_n(k) \)

\(\Leftrightarrow \) \(r = \bigoplus_{i=1}^n X_i \) for some \(X_i \in \chi(G) \)

Answer: \(G \) diagonalizable group

In fact:
Theorem: Equivalent:
a) \(G \) diagonalizable
b) every finite dimensional representation is direct sum of characters
c) for every representation \((V_1, r)\) of \(G : V = \bigoplus_{\chi \in \chi(G)} V_\chi \)

(B) Diagonalizable Groups
Let \(N \) be finitely generated abelian group.
Then \(kCN_1 : k\)-vector space with basis \(N \)
(i.e. \(kCN_1 \exists x = \sum_{i \in N} a_i \cdot \overline{n_i} \) \(a_i \in k, n_i \in N \))

1) is finitely generated \(k \)-algebra by extending multiplication of \(N \)
2) is Hopf algebra by setting
\(\mu(x) = n \otimes \overline{n_i} \), \(e(x) = 1 \), \(\Delta(x) = x^{-1} \)

Example B.1.
1) \(N = Z : k[CN] \exists x = \sum_{a \in \mathbb{Z}} a \cdot \overline{i} \), \(a \in k, a_i = 0 \) for \(a_i \neq 0 \) \(a \in \mathbb{Z} \)

\(\Rightarrow k[CN] \cong k[T^{\mathbb{Z}}] \) as Hopf algebras

2) \(N = \mathbb{Z} / n \mathbb{Z} : k[CN / n] \exists x = \sum_{a_i \in \mathbb{Z} \mod n} a_i \cdot \overline{i} \Rightarrow k[CN / n] \cong k[T^\mathbb{Z} / n] \)
Lemma B.2.
a) $N_1 \times N_2$ fg. ab. gr. : $kCN_1 \times \times kCN_2$ as k-algebras
b) the group-like elements of kCN_1 are exactly given by N

Sketch of Proof:

\[\left\{ (e_i)_{i \in I}, (f_j)_{j \in J} \right\} \text{ bases for } (W, V) \Rightarrow \left\{ (e_i \otimes f_j)_{(i,j) \in I \times J} \right\} \text{ basis of } W \otimes V \]

b) => clear by definition of m^*

\[m^* \left(\sum_{i=1}^{n} a_i n_i \right) = \sum_{i=1}^{n} a_i m^*(n_i) = \sum_{i=1}^{n} a_i \sigma_i \otimes m_i \otimes w_i \]

Definition B.3. Diagonalizable Groups
An algebraic group G is called diagonalizable if

\[G \cong \text{Spec}(kCN_1) = \text{D}(N) \]

for some finitely generated abelian group N

Lemma B.4.

\[\text{Spec}(kCN_1) \text{ is given by } \mathbb{R} \rightarrow \text{Hom}_{\mathbb{R}}(N, \mathbb{R}^\times) \]

b) $D(CN_1)$ decomposes as

\[D(CN_1) = \prod_{m_1} \mathbb{G}_m \times \mathbb{G}_m \times \mathbb{G}_m \times \cdots \times \mathbb{G}_m \]

c) $\chi(D(CN_1)) = N$

d) $G = \text{Spec} A$ diag $\iff A$ spanned by group-like elements

Sketch of proof:

\[\mathbb{G}_m = \bigoplus \mathbb{Z} \oplus \bigoplus \mathbb{Z} \oplus \bigoplus \cdots \bigoplus \mathbb{Z} \bigoplus \mathbb{Z} \]

\[\Rightarrow k[C] = k[C] \otimes \cdots \bigoplus \Rightarrow \text{ b) } \]

\[\text{b) by B.2 a) and A.3. } \text{Spec}(A \otimes \mathbb{R}) = \text{Spec}(A) \times \text{Spec}(\mathbb{R}) \]

Theorem: B.5. Classification of diagonalizable groups

The contravariant functor

\[D: \text{fg. abelian groups} \Rightarrow \text{diagonalizable groups} \]

\[\text{is an equivalence of categories.} \]

(with inverse $G \mapsto \chi(G)$)
Sketch of proof:
1) essentially surj. by definition
2) fully faithful, i.e. \(\text{Hom}(N,N') \to \text{Hom}(\alpha N, \alpha N') \)

 \[B.4 \text{ b) } \Rightarrow \text{reduce to } N, N' \in \mathbb{Z}^n \cup \{ \mathbb{Z} \text{ mod } \text{integers} \} \]

 (cyclic groups)

 \[\Rightarrow \text{distinguish 4 possible cases} \]

 If \(N = N' = \mathbb{Z} \):

 \(\text{Hom}(N,N') = \text{Hom}(\mathbb{Z}, \mathbb{Z}) \cong \mathbb{Z} \text{ and} \)

 \[\text{Hom}(\Gamma_{\mathbb{Z}}, \Gamma_{\mathbb{Z}}) = \text{Hom}(\mathbb{Z}^\times, \mathbb{Z}^\times) \cong \mathbb{Z} \text{ for all morphisms of Hopf algebras} \]

Main Theorem B.6. The following conditions are equivalent
a) \(G \) diagonalizable
b) every finite dimensional representation is a direct sum of characters
c) for every finite dimensional representation \((V, \iota_r) \) of \(G \),

 \[V = \bigoplus_{\iota \in \text{ex}(G)} V^\iota \]

For following talks, we will need:

Corollary B.7. \(G \) diag., \(V \) fin. \(k \)-vector space
Then:

\[V = \bigoplus_{\iota \in \text{ex}(G)} V^\iota \text{ with } \bigoplus_{\iota \in \text{ex}(G)} \text{subspaces } V^\iota \]

\(\Rightarrow \text{representation of } G \) on \(V \)

\[\text{"x(A)" - gradation of } V \]

Proof: Follows by (b) \(\iff \) (a) in B.6.

Indeed: \(G \) diagn \(\Rightarrow \) every \((V, \iota_r) : r = \bigoplus_{\iota \in \text{ex}(G)} \) for some \(\iota \in \text{ex}(G) \)
"Define $V_m = V_{x_m}$ as given by a)
\[\dim(V_m) \]
\[\rightarrow \dim V = \sum_{m \in \text{ex}(a)} \dim (V_m) \]
\[\text{Define } r = \bigoplus_{m \in \text{ex}(a)} \]
\[\text{(corresponding to basis of eigenvectors given by V_m)} \]

Sketch of proof B.6:

We only show $a) \Rightarrow b)$ and $b) \Rightarrow c)$

"$a) \Rightarrow b)$"

Get diagonal and $\{V_m\}$ representation.

Aim: There is basis of V s.t. $r(G) \in \text{Dn}(k)$

i.e. $r(G)(v) \in \text{Dn}(k) \neq R$

"all $r(G)$ are simultaneously diagonalizable"

Recall:

\[r(G)(v) \in \text{Dn}(k) \Rightarrow r(G) \in \text{Dn} \]

$x(G) \in \text{Dn}$

In $\text{char}(k) = 0$ it suffices: all $r(G) \in r(G(k))$ simultaneously diag.

Fact from LA: C commutative set of matrices \Rightarrow

(i.e. pairwise commutative):

separately diag. \Rightarrow simultaneous diag.

Steps of the proof: (for $\text{char}(k) = 0$)

1. Every $g \in G(k)$ is semisimple (= diagonalizable)

 \[G(k) = D(C) \cong G_m \times \prod_{i=1}^{r} \mathbb{M}_{m_i} \cong D_{n(k)} \]

 \[\mathbb{M}_{m_i} \cong G_m \text{ by } \mathbb{Z} \rightarrow \mathbb{Z}[m] \]

2. Every $r(G) \in \text{GL}(k)$ is diagonalizable

 By Jordan decompos.: $r(G) = \rho r(G_s) = r(G_s)$

 \[g = g_s \]
(3) \(r(G(k)) \) is a commutative set (i.e., elements commute pairwise).

\[\forall g, h \in G(k), r(g) \cdot r(h) = r(hg) = r(hg) \cdot r(g) \]

\[\text{Hom}_\text{cts}(N, k^*) \]

Fact (k)

\[\Rightarrow \quad \forall (g) \in r(G(k)) \text{ simultaneously diagonal}, \quad \text{i.e. } \exists \mathbf{S} \in \text{GL}(k) : \mathbf{S}^{-1} (g) \mathbf{S} = \text{Diag}(k) \]

\[(\text{char}(k) = 0) \]

\[\Rightarrow \quad \text{(b) as } r \rightarrow S \circ r \circ S \text{ is isomorphism} \]

\[\Rightarrow \quad \text{(c)} \]

As in LA, one can show that eigenvectors corresponding to different characters are linear independent \(\Rightarrow \) sum of eigenspaces is direct.